3.1428 \(\int \frac {x^{15}}{(2+x^6)^{3/2}} \, dx\)

Optimal. Leaf size=394 \[ -\frac {x^{10}}{3 \sqrt {x^6+2}}+\frac {10}{21} \sqrt {x^6+2} x^4-\frac {80 \sqrt {x^6+2}}{21 \left (x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )\right )}-\frac {80\ 2^{2/3} \left (x^2+\sqrt [3]{2}\right ) \sqrt {\frac {x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )\right )^2}} F\left (\sin ^{-1}\left (\frac {x^2+\sqrt [3]{2} \left (1-\sqrt {3}\right )}{x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )}\right )|-7-4 \sqrt {3}\right )}{21 \sqrt [4]{3} \sqrt {\frac {x^2+\sqrt [3]{2}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )\right )^2}} \sqrt {x^6+2}}+\frac {40 \sqrt [6]{2} \sqrt {2-\sqrt {3}} \left (x^2+\sqrt [3]{2}\right ) \sqrt {\frac {x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )\right )^2}} E\left (\sin ^{-1}\left (\frac {x^2+\sqrt [3]{2} \left (1-\sqrt {3}\right )}{x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )}\right )|-7-4 \sqrt {3}\right )}{7\ 3^{3/4} \sqrt {\frac {x^2+\sqrt [3]{2}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )\right )^2}} \sqrt {x^6+2}} \]

[Out]

-1/3*x^10/(x^6+2)^(1/2)+10/21*x^4*(x^6+2)^(1/2)-80/21*(x^6+2)^(1/2)/(x^2+2^(1/3)*(1+3^(1/2)))-80/63*2^(2/3)*(2
^(1/3)+x^2)*EllipticF((x^2+2^(1/3)*(1-3^(1/2)))/(x^2+2^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*((2^(2/3)-2^(1/3)*x^2
+x^4)/(x^2+2^(1/3)*(1+3^(1/2)))^2)^(1/2)*3^(3/4)/(x^6+2)^(1/2)/((2^(1/3)+x^2)/(x^2+2^(1/3)*(1+3^(1/2)))^2)^(1/
2)+40/21*2^(1/6)*3^(1/4)*(2^(1/3)+x^2)*EllipticE((x^2+2^(1/3)*(1-3^(1/2)))/(x^2+2^(1/3)*(1+3^(1/2))),I*3^(1/2)
+2*I)*(1/2*6^(1/2)-1/2*2^(1/2))*((2^(2/3)-2^(1/3)*x^2+x^4)/(x^2+2^(1/3)*(1+3^(1/2)))^2)^(1/2)/(x^6+2)^(1/2)/((
2^(1/3)+x^2)/(x^2+2^(1/3)*(1+3^(1/2)))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 394, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {275, 288, 321, 303, 218, 1877} \[ -\frac {x^{10}}{3 \sqrt {x^6+2}}+\frac {10}{21} \sqrt {x^6+2} x^4-\frac {80 \sqrt {x^6+2}}{21 \left (x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )\right )}-\frac {80\ 2^{2/3} \left (x^2+\sqrt [3]{2}\right ) \sqrt {\frac {x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )\right )^2}} F\left (\sin ^{-1}\left (\frac {x^2+\sqrt [3]{2} \left (1-\sqrt {3}\right )}{x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )}\right )|-7-4 \sqrt {3}\right )}{21 \sqrt [4]{3} \sqrt {\frac {x^2+\sqrt [3]{2}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )\right )^2}} \sqrt {x^6+2}}+\frac {40 \sqrt [6]{2} \sqrt {2-\sqrt {3}} \left (x^2+\sqrt [3]{2}\right ) \sqrt {\frac {x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )\right )^2}} E\left (\sin ^{-1}\left (\frac {x^2+\sqrt [3]{2} \left (1-\sqrt {3}\right )}{x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )}\right )|-7-4 \sqrt {3}\right )}{7\ 3^{3/4} \sqrt {\frac {x^2+\sqrt [3]{2}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )\right )^2}} \sqrt {x^6+2}} \]

Antiderivative was successfully verified.

[In]

Int[x^15/(2 + x^6)^(3/2),x]

[Out]

-x^10/(3*Sqrt[2 + x^6]) + (10*x^4*Sqrt[2 + x^6])/21 - (80*Sqrt[2 + x^6])/(21*(2^(1/3)*(1 + Sqrt[3]) + x^2)) +
(40*2^(1/6)*Sqrt[2 - Sqrt[3]]*(2^(1/3) + x^2)*Sqrt[(2^(2/3) - 2^(1/3)*x^2 + x^4)/(2^(1/3)*(1 + Sqrt[3]) + x^2)
^2]*EllipticE[ArcSin[(2^(1/3)*(1 - Sqrt[3]) + x^2)/(2^(1/3)*(1 + Sqrt[3]) + x^2)], -7 - 4*Sqrt[3]])/(7*3^(3/4)
*Sqrt[(2^(1/3) + x^2)/(2^(1/3)*(1 + Sqrt[3]) + x^2)^2]*Sqrt[2 + x^6]) - (80*2^(2/3)*(2^(1/3) + x^2)*Sqrt[(2^(2
/3) - 2^(1/3)*x^2 + x^4)/(2^(1/3)*(1 + Sqrt[3]) + x^2)^2]*EllipticF[ArcSin[(2^(1/3)*(1 - Sqrt[3]) + x^2)/(2^(1
/3)*(1 + Sqrt[3]) + x^2)], -7 - 4*Sqrt[3]])/(21*3^(1/4)*Sqrt[(2^(1/3) + x^2)/(2^(1/3)*(1 + Sqrt[3]) + x^2)^2]*
Sqrt[2 + x^6])

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 303

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(Sq
rt[2]*s)/(Sqrt[2 + Sqrt[3]]*r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a +
 b*x^3], x], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 1877

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 - Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 - Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 + Sqrt[3])*s + r*x)), x
] - Simp[(3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[(s*(
s + r*x))/((1 + Sqrt[3])*s + r*x)^2]), x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin {align*} \int \frac {x^{15}}{\left (2+x^6\right )^{3/2}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {x^7}{\left (2+x^3\right )^{3/2}} \, dx,x,x^2\right )\\ &=-\frac {x^{10}}{3 \sqrt {2+x^6}}+\frac {5}{3} \operatorname {Subst}\left (\int \frac {x^4}{\sqrt {2+x^3}} \, dx,x,x^2\right )\\ &=-\frac {x^{10}}{3 \sqrt {2+x^6}}+\frac {10}{21} x^4 \sqrt {2+x^6}-\frac {40}{21} \operatorname {Subst}\left (\int \frac {x}{\sqrt {2+x^3}} \, dx,x,x^2\right )\\ &=-\frac {x^{10}}{3 \sqrt {2+x^6}}+\frac {10}{21} x^4 \sqrt {2+x^6}-\frac {40}{21} \operatorname {Subst}\left (\int \frac {\sqrt [3]{2} \left (1-\sqrt {3}\right )+x}{\sqrt {2+x^3}} \, dx,x,x^2\right )-\frac {\left (40\ 2^{5/6}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {2+x^3}} \, dx,x,x^2\right )}{21 \sqrt {2+\sqrt {3}}}\\ &=-\frac {x^{10}}{3 \sqrt {2+x^6}}+\frac {10}{21} x^4 \sqrt {2+x^6}-\frac {80 \sqrt {2+x^6}}{21 \left (\sqrt [3]{2} \left (1+\sqrt {3}\right )+x^2\right )}+\frac {40 \sqrt [6]{2} \sqrt {2-\sqrt {3}} \left (\sqrt [3]{2}+x^2\right ) \sqrt {\frac {2^{2/3}-\sqrt [3]{2} x^2+x^4}{\left (\sqrt [3]{2} \left (1+\sqrt {3}\right )+x^2\right )^2}} E\left (\sin ^{-1}\left (\frac {\sqrt [3]{2} \left (1-\sqrt {3}\right )+x^2}{\sqrt [3]{2} \left (1+\sqrt {3}\right )+x^2}\right )|-7-4 \sqrt {3}\right )}{7\ 3^{3/4} \sqrt {\frac {\sqrt [3]{2}+x^2}{\left (\sqrt [3]{2} \left (1+\sqrt {3}\right )+x^2\right )^2}} \sqrt {2+x^6}}-\frac {80\ 2^{2/3} \left (\sqrt [3]{2}+x^2\right ) \sqrt {\frac {2^{2/3}-\sqrt [3]{2} x^2+x^4}{\left (\sqrt [3]{2} \left (1+\sqrt {3}\right )+x^2\right )^2}} F\left (\sin ^{-1}\left (\frac {\sqrt [3]{2} \left (1-\sqrt {3}\right )+x^2}{\sqrt [3]{2} \left (1+\sqrt {3}\right )+x^2}\right )|-7-4 \sqrt {3}\right )}{21 \sqrt [4]{3} \sqrt {\frac {\sqrt [3]{2}+x^2}{\left (\sqrt [3]{2} \left (1+\sqrt {3}\right )+x^2\right )^2}} \sqrt {2+x^6}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 54, normalized size = 0.14 \[ \frac {x^4 \left (10 \sqrt {2} \sqrt {x^6+2} \, _2F_1\left (\frac {2}{3},\frac {3}{2};\frac {5}{3};-\frac {x^6}{2}\right )+x^6-20\right )}{7 \sqrt {x^6+2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^15/(2 + x^6)^(3/2),x]

[Out]

(x^4*(-20 + x^6 + 10*Sqrt[2]*Sqrt[2 + x^6]*Hypergeometric2F1[2/3, 3/2, 5/3, -1/2*x^6]))/(7*Sqrt[2 + x^6])

________________________________________________________________________________________

fricas [F]  time = 0.90, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {x^{6} + 2} x^{15}}{x^{12} + 4 \, x^{6} + 4}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^15/(x^6+2)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^6 + 2)*x^15/(x^12 + 4*x^6 + 4), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{15}}{{\left (x^{6} + 2\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^15/(x^6+2)^(3/2),x, algorithm="giac")

[Out]

integrate(x^15/(x^6 + 2)^(3/2), x)

________________________________________________________________________________________

maple [C]  time = 0.14, size = 40, normalized size = 0.10 \[ -\frac {10 \sqrt {2}\, x^{4} \hypergeom \left (\left [\frac {1}{2}, \frac {2}{3}\right ], \left [\frac {5}{3}\right ], -\frac {x^{6}}{2}\right )}{21}+\frac {\left (3 x^{6}+20\right ) x^{4}}{21 \sqrt {x^{6}+2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^15/(x^6+2)^(3/2),x)

[Out]

1/21*x^4*(3*x^6+20)/(x^6+2)^(1/2)-10/21*2^(1/2)*x^4*hypergeom([1/2,2/3],[5/3],-1/2*x^6)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{15}}{{\left (x^{6} + 2\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^15/(x^6+2)^(3/2),x, algorithm="maxima")

[Out]

integrate(x^15/(x^6 + 2)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x^{15}}{{\left (x^6+2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^15/(x^6 + 2)^(3/2),x)

[Out]

int(x^15/(x^6 + 2)^(3/2), x)

________________________________________________________________________________________

sympy [A]  time = 2.82, size = 36, normalized size = 0.09 \[ \frac {\sqrt {2} x^{16} \Gamma \left (\frac {8}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, \frac {8}{3} \\ \frac {11}{3} \end {matrix}\middle | {\frac {x^{6} e^{i \pi }}{2}} \right )}}{24 \Gamma \left (\frac {11}{3}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**15/(x**6+2)**(3/2),x)

[Out]

sqrt(2)*x**16*gamma(8/3)*hyper((3/2, 8/3), (11/3,), x**6*exp_polar(I*pi)/2)/(24*gamma(11/3))

________________________________________________________________________________________